УДК: 582.734.4:581.16

DOI 10.33514/1694-7851-2023-2-46-50

Бейшенбаева Р.А.

илимий кызматкер

Кыргыз Республикасынын Улуттук илимдер академиясы,

Э. Гареев атындагы Ботаникалык бакча

Бишкек ш.

roza54roza@mail.ru

Ахматов М.К.

биол. илим. док., проф.

И. Арабаев атындагы Кыргыз мамлекеттик университети

Бишкек ш.

medet60@mail.ru

Хахаза Ж.С.

магистрант

И. Арабаев атындагы Кыргыз мамлекеттик университети

Бишкек ш.

hahazadjamilya9@gmail.com

ЧҮЙ ӨРӨӨНҮНҮН ШАРТЫНДА РОЗА ГҮЛДӨРҮН КАЛЕМЧЕЛЕР МЕНЕН КӨБӨЙТҮҮНҮН ӨЗГӨЧӨЛҮКТӨРҮ

Аннотация. Макалада өсүү стимуляторлорунун Rhizopon A, Rhizopon B жана RAS -10 розалардын калемчелердин тамырлашына тийгизген таасирин изилдөөлөрдүн натыйжалары берилген. Розалар төмөнкү топторго таандык: Чех селекциядагы флорибунда, минифлопибунда жана гибрид чай. Rhizopon A тамырланган калемчелердин санын 4% дан 18% га чейин көбөйтөт, Rhizopon B 6% 20% жана RAS-10 10дон 25%ке чейин.

Негизги сөздөр: розалар, флорибунда, минифлопибунда, гибрид чай, өсүү стимуляторлор, калемче, тамырлоо, вегетативдик көбөйүү.

Бейшенбаева Р.А.

научный сотрудник

Национальная академия наук Кыргызской Республики

Ботанический сад имени Э. Гареева

г. Бишкек

roza54roza@mail.ru

Ахматов М.К.

док. биол. наук, проф.

Кыргызский государственный университет имени И. Арабаева

г. Бишкек

medet60@mail.ru

Хахаза Ж.С.

магистрант

Кыргызский государственный университет имени И. Арабаева

г. Бишкек hahazadjamilya9@gmail.com

ОСОБЕННОСТИ РАЗМНОЖЕНИЯ РОЗ ЧЕРЕНКАМИ В УСЛОВИЯХ ЧУЙСКОЙ ДОЛИНЫ

Аннотация. В статье приведены результаты исследований влияния стимуляторов роста Rhizopon A, Rhizopon B и RAS-0 на укоренение черенков роз. Розы относятся к следующим группам: флорибунда, минифлопибунда и чайно-гибридные Чешской селекции. Rhizopon A увеличивает количество укоренившихся черенков от 4 до 18 %, Rhizopon B от 6 до 20 % и RAS-10 от 10 до 25 %.

Ключевые слова: розы, флорибунда, минифлопибунда, чайно-гибридные, стимуляторы роста, черенки, укоренение, вегетативное размножение.

Beishenbaeva R.

Research Associate
National Academy of Sciences of the Kyrgyz Republic
Botanical Garden named after E. Gareev
Bishkek c.
roza54roza@mail.ru

Akhmatov M.

Doctor of Biological Sciences, Professor Kyrgyz State University named after I. Arabaeva Bishkek c. medet60@mail.ru

Zh. Khakhaza

Master's Student
Kyrgyz State University named after I. Arabaeva,
Bishkek c.
hahazadjamilya9@gmail.com

PECULIARITIES OF REPRODUCTION OF ROSES BY CUTTINGS IN THE CONDITIONS OF THE CHUY VALLEY

Abstract. The article presents the results of studies of the effect of growth stimulants Rhizopon A, Rhizopon B and RAS -10 on the rooting of rose cuttings. Roses belong to the following groups: floribunda, miniflopibunda and hybrid tea of the Czech selection. Rhizopon A increases the number of rooted cuttings from 4 to 18%, Rhizopon B from 6 to 20% and RAS-10 from 10 to 25%.

Keywords: roses, floribunda, miniflopibunda, hybrid tea, growth stimulants, cuttings, rooting, vegetative propagation.

Наличие большого количества групп, сортов и форм, отличающихся различной энергией роста, длительностью периода цветения, требовательностью к условиям выращивания и дру-

гими биологическими и декоративными особенностями, расширяет возможности использования роз для решения всевозможных задач.

В настоящее время усилия науки и производства направлены на наиболее эффективное выращивание роз за счет сокращения периода вегетативного размножения путем применения более совершенной технологии.

В природных условиях Чуйской долины с жарким засушливым летом большое значение приобретает зеленое черенкование роз, так как размножение их другими способами /в частности окулировкой/ не всегда дает положительные результаты. К тому же размножение роз окулировкой требует больших материальных и трудовых затрат. Зеленое черенкование обеспечивает создание более однородных по росту растений, повторяющих без изменений наследственные признаки родителя, уменьшая при этом затраты на их выращивание. Биологические особенности, и в том числе размножение роз изучались рядом исследователей.

В условиях резко-континентального климата Узбекистана изучены биологические особенности размножения 65 сортов чайно-гибридных роз из коллекции Ботанического сада АН РУз черенкованием. Установлено, что по способности к укореняемости сорта делятся на очень хорошо (свыше 75%), хорошо (50–75%) и слабо (менее 50%) укореняющиеся [1].

В учебно-методическом пособии [2] освещены вопросы вегетативного размножения цветочных культур, в том числе роз и др. Приводятся подробные описания практически всех известных способов вегетативного размножения.

При изучении биологических особенностей плетистых роз в условиях Туркменистана выявлены эффективные способы размножения. Обработка черенков большинства испытанных сортов раствором индолилуксусной кислоты 0,02% концентрации, дает хорошую укореняемость, приближающуюся к 100% [3].

Исследования биологических особенностей новых сортов эфиромасличной розы в условиях предгорной зоны Крыма показали, что новые сорта роз хорошо размножаются окулировкой на шиповнике, стеблевыми черенками размножаются слабо. Лучший способ размножения — закладка в траншеи многолетних ветвей [4].

Следует отметить отдельных авторов, в исследованиях которых посвящены только особенностям вегетативного размножения роз. Е.П. Мороз и Е.В. Малаевым [5] установлено, что оптимальными сроками черенкования в условиях Волгоградской области является первая декада апреля и размножение роз зелеными черенками с использованием 1,0% раствора корневина является наиболее перспективным.

Объектами исследований служили розы, относящиеся к следующим группам: флорибунда, минифлопибунда и чайно-гибридные Чешской селекции.

Сорта из группы флорибунда (F): Jitka – Йитка, Krasna Uslavanka - Красивая Уславанка, Тотав Вата – Томаш Батя, Edvard Benes – Эдуард Бенеш, Dukat – Дукат, Kde domov muj – Где моя родина, Orava – Орава. Сорта минифлорибунда (MinFl) или Патио (спрей): Marycka Magdonova – Маричка Магдонова, Ceskoslovensky cerveni kriz – Чехословацкий красный крест, Vlasta Burian – Власта Буриан. Чайно-гибридные (HT) сорта: Рореlka – Золушка, Lidka - Лидка, Roxana – Роксана, Helenka – Эленка, Alois Jirasek - Алоис Йирасек, Barunka - Барунка, Radka – Радка.

Исследования проведены в лаборатории экспериментальной ботаники Ботанического сада им. Э. Гареева НАН КР.

Черенки частично погружали в стимуляторы роста Rhizopon A и Rhizopon B, в концентрации 0.6% и выдержали 24 часа. Их зачеренковали в стеллажи разводочной теплички по 50 шт. Подготовленные черенки высаживали в песок наклонно под углом $20–30^\circ$ к поверхности почвы на глубину 1.5–2 см.

Rhizopon A и Rhizopon B. Стимуляторы укоренения. Действующее вещества: Rhizopon A – индолмаслянная кислота и Rhizopon B – индолилуксусная кислота. В форме порошка. Rhizopon был разработан и синтезирован в 1930 году Амстердамским Хининским заводом (АСЕ) на базе которой в 1939 году была основана компания Rhizopon – крупнейшая и старейшая в мире компания по производству и исследованию гормонов растений. В процессе выдержки, черенки медленно поглощают Rhizopon.

Опытные черенки погрузили в воду на 24 часа, затем обмакивали в стимуляторы роста RAS -10. Контроль замачивали в воде. Зачеренковали в стеллажи разводочной теплички по 20 шт. Количество укорененных черенков выражалось в %.

В таблице 1 представлены результаты влияния стимуляторов роста Rhizopon A и Rhizopon В на укоренение черенков роз. Rhizopon A стимулирует укореняемость черенков Popelka на 6 %, Jitka 4 % и Krasna Uslavanka 18 %. Черенков обработанных стимулятором Rhizopon В в сравнении с контрольным вариантом укоренилось больше у Popelka на 8 %, Jitka 6 % и Krasna Uslavanka 20 %. В опытных вариантах количество укоренившихся черенков незначительно больше, чем в контроле, кроме розы Krasna Uslavanka.

Таблица 1. Влияние стимуляторов роста Rhizopon A и Rhizopon В на укоренение черенков роз, %

$N_{\underline{0}}$	Название	гр.	шт.	Rhizopon A	%	Rhizopon B	%	Контроль	%
Π/Π	сорта			укоренилось,	укор-я	укоренилось,	укор-я	(вода)	укор-я
				ШТ.		ШТ.		укорени-	
								лось, шт.	
1.	Popelka	HT	50	5	10	6	12	2	4
2.	Jitka	F	50	9	18	10	20	7	14
3.	Krasna	F	50	25	50	26	52	16	32
	Uslavanka								

В таблице 2 представлены результаты влияния стимулятора роста RAS -10 на укоренение черенков роз. В опытных и контрольных вариантах черенков роз Orava и Ceskoslovensky сеrveni kriz оказалось равным. У остальных сортов роз влияние стимулятора роста RAS -10 выразилось в увеличении количества укоренившихся черенков от 10 до 25 %.

Таблица 2. Влияние стимулятора роста RAS -10 на укоренение черенков роз, %

$N_{\underline{0}}$	Название сорта	ШТ.	контроль	%	RAS-10	%
$\Pi \backslash \Pi$	/Π			укоренения		укоренения
1.	Lidka HT	20	5	25	7	35
2.	Roxana HT		3	15	7	35
3.	Helenka HT		3	15	5	25
4.	Alois Jirasek HT		4	20	6	30
5.	Barunka HT		3	15	5	25

6.	Radka HT		4	20	6	30
7.	Tomas Bata F		10	50	13	65
8.	Edvard Benes F		9	45	11	55
9.	Dukat F		10	55	13	65
10.	Kde domov muj F	-,-	12	60	17	85
11.	Krasna Uslavanka F		11	55	14	70
12.	Orava F		10	50	10	50
13.	Marycka Magdonova Min Fl		15	75	17	85
14.	Ceskoslovensky cerveni kriz Min Fl		16	80	16	80
15.	Vlasta Burian MinFl		13	65	14	70

Таким образом, стимуляторы роста Rhizopon A, Rhizopon B и RAS-10 положительно влияют на укоренение черенков роз. В зависимости от принадлежности роз к флорибунда, минифлопибунда или чайно-гибридной группам и сорта в опытных вариантах укоренившихся черенков насчитывалось больше на 4–25 % по сравнению с контролем. Из испытанных стимуляторов роста наиболее эффективным показал себя стимулятор роста RAS -10. Лучшие результаты укоренения черенков отмечены у сортов *Kde domov muj*, *Kde domov muj*, *Marycka Magdonova* Min, *Ceskoslovensky cerveni kriz* и *Vlasta Burian* (от 70 до 85 %). Наименьшее количество черенков укоренилось у двух сортов *Helenka* и *Barunka* (25 %).

Список использованной литературы:

- 1. Абдурахманова Л.А. Биологические особенности размножения чайно-гибридных роз черенками в условиях Ташкента: автореф. дис. ... канд. биол. наук. Ташкент, 1994. 23 с.
- 2. Бурлуцкая Л.В., Миронова Н.В., Стефановская Е.В. Вегетативное размножение цветочных культур / Учебно-методическое пособие на модульной основе с диагностико-квалиметрическим обеспечением. Ростов-на-Дону: Южный федеральный университет, 2009. 64 с.
- 3. Канахина Л.И. Биологические особенности плетистых роз, интродуцированных в Туркменистан: автореф. дис. ... канд. биол. наук. Ашгабат, 1996. 26 с.
- 4. Машанов В.И. Биологические и хозяйственно-ценные особенности новых сортов эфиромасличной розы в условиях предгорной зоны Крыма: автореф. дис. ... канд. c/x. наук. Кишинев, 1965. 22 c.
- 5. Мороз Е.П., Малаева Е.В. Особенности вегетативного размножения роз одревесневшими и зелеными черенками // Сборник научных трудов Государственного Никитского ботанического сада. 2018. Т. 147. С. 137–138.

Рецензент: док. биол. наук Алымкулова А.А.